

StrathE2EPolar

a strategic modelling tool for ecosystem-based fisheries management Insights from the Wést Greenland case study

Matthew Hatton University of Strathclyde matthew.hatton@strath.ac.uk

Natural Environment Research Counci

University of Strathclyde Glasgow

02 Domain + Sedimentary Mapping 03 NEMO-MEDUSA RCP 8.5

04 Machine Learning for predicting fishing patterns 05 Investigating the impacts of changing fishing pressure

02 Domain + Sedimentary Mapping 03 NEMO-MEDUSA RCP 8.5

04 Machine Learning for predicting fishing patterns 05 Investigating the impacts of changing fishing pressure

Why another model? - StrathE2EPolar IS FAST -

Space is simplified to

ocean volumes

8 shelf sea habitats

- Rock
- Mud
- Sand
- Gravel

Upper

28 guilds 12 fleets

02 Domain + Sedimentary Mapping 03 NEMO-MEDUSA RCP 8.5

04 Machine Learning for predicting fishing patterns 05 Investigating the impacts of changing fishing pressure

02 - Domain + Sedimentary Mapping

02 - Domain + Sedimentary Mapping

02 <u>Domain</u> + Sedimentary Mapping 03 NEMO-MEDUSA RCP 8.5

04 Machine Learning for predicting fishing patterns 05 Investigating the impacts of changing fishing pressure

Model Parametrisation – Physics & Chemistry

 MEDUSA

 2010-2019

 2090-2099

Ice Cover Ice Thickness Temperature Ntrate Ammonia Detritus

StrathE2E Polar

03 - NEMO-MEDUSA ROP 8.5

 1975
 2010 2019

 Physics - NEMO-MEDUSA Earth System Model [1]

Year

2090 2099

03 - NEVO-MEDUSA RCP 8.5

Physics - NEMO-MEDUSA Earth System Model [1]

Year

03 - NEMO-MEDUSA ROP 8.5

Physics - NEMO-MEDUSA Earth System Model [1]

02 Domain + Sedimentary Mapping 03 NEMO-MEDUSA RCP 8.5

04 Machine Learning for predicting fishing patterns 05 Investigating the impacts of changing fishing pressure

04 - Machine Learning for predicting fishing patterns

04 - Machine Learning for predicting fishing patterns 2012-01-01

02 Domain + Sedimentary Mapping 03 NEMO-MEDUSA RCP 8.5

04 Machine Learning for predicting fishing patterns 05 Investigating the impacts of changing fishing pressure

05 - Investigating the impacts of changing fishing pressure

05 - Investigating the impacts of changing fishing pressure

05 - Investigating the impacts of changing fishing pressure

05 - Investigating the impacts of changing fishing pressure

Year + 2010 + 2090

Summary

- The coupled effects of climate change and Demersal fishing is minimal on some upper trophic levels (Birds and Cetaceans) but has a larger effect further down the food web (Demersal/Planktivorous)
- Shifts in climate are causing larger variations of biomass when using non-Demersal fishing gears
- Significant decrease in maritime mammal biomass within the system between the two decadal periods

02 <u>Domain</u> + Sedimentary Mapping 03 NEMO-MEDUSA RCP 8.5

04 Machine Learning for predicting fishing patterns 05 Investigating the impacts of changing fishing pressure

Questions for you

What would you like to see implemented into StrathE2EPolar?

How could we tell a local story through StrathE2EPolar?

How would you like to see StrathE2EPolar used?

Email your suggestions to matthew.hatton@strath.ac.uk

Thank you for listening

References

[1] Long, Stephen, and Peter JS Jones. "Greenland's offshore Greenland halibut fishery and role of the Marine Stewardship Council certification: A governance case study." *Marine Policy* 127 (2021): 104095.

[2] Yool, Andrew, Ekaterina E. Popova, and Tom R. Anderson. "MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies." *Geoscientific Model Development* 6.5 (2013): 1767-1811.

[3] Heath, Michael R., et al. "Ecosystem approach to harvesting in the Arctic: Walking the tightrope between exploitation and conservation in the Barents Sea." *Ambio* 51 (2022): 456-470.

[4] Nogueira, A. "Assessment of the Greenland Halibut Stock Component in NAFO Subarea 0+ 1 (Offshore) MA Treble Fisheries and Oceans Canada, Freshwater Institute, 501 University Cres., Winnipeg, Manitoba, Canada R3T 2N6."

Natural Environment Research Council

matthew.hatton@strathac.uk

University of Strathclyde Glasgow